Problem 1 (answer on page 1 of the booklet)

Find the domain and the range of the function $f(x, y, z)=\sqrt[2]{-2\left[(x-1)^{2}+y^{2}+(z-3)^{2}-4\right]}$ determine if the domain of f is an open region, a closed region or neither? Also, determine if the domain is bounded or unbounded. Also, describe the level curves of f. (10 pts)
Problem 2 (answer on page 2 of the booklet)
Consider the function $f(x, y, z)=x^{3} z+x^{2} y^{2}+\sin (y z)$
(i) Find the tangent plane and normal line to the surface $f(x, y, z)=-3$ at the point $(-1,0,3)$.(10 pts)
(ii) Suppose that the equation $f(x, y, z)-x y=\ln (z y)$ defines z implicitly as a function of (x,y). Find $\frac{\partial z}{\partial x}$ at the point $(2, \pi, \pi)(4 p t s)$
Problem 3 (answer on page 3 of the booklet)
Find all local maxima, local minima and saddle points for $f(x, y)=2 x^{3}-3 y^{3}+6 x y^{2}-150 x$. (10 pts)
Problem 4 (answer on page 4 of the booklet)
For each of the following limits, say if it exists or no, justifying your answer. (5 pts each)
a) $\lim _{(x, y) \rightarrow(0,0)} \cos \left(\frac{x^{6} y^{5}}{x^{10}+y^{2}}\right)$
b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{6} y^{2}}{x^{10}+y^{5}}$
c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y\left(e^{x}-1\right)}{y-x}$
d) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+y^{2}}$

Problem 5 (answer on page 5 of the booklet)
Is $f(x, y)=\left\{\begin{array}{ll}x \sin \frac{1}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$ continous at $(0,0) ?(5 p t s)$
Problem 6 (answer on page 6 and the last page of the booklet)
Suppose that the derivative of a function $f(x, y, z)$ at the point $(2,-3,1)$ decreases most rapidly in the direction of $A=3 i-2 j+k$, and that in this direction the value of the derivative is $-2 \sqrt{14}$. Also suppose that $f(3,1,0)=7, \quad f(5,-2,4)=20, \quad \nabla f(3,1,0)=3 i-j \quad$ and $\quad \nabla f(5,2,-4)=4 i-3 j+k$. $f(2,-3,1)=4$.

Let $\quad x=3 r-s, \quad y=r-4 s, \quad z=r^{2} s \quad$ and $w=f(x, y, z)$
(i) Find the derivative of f at the point $(3,1,0)$ in the direction of $i+j+\sqrt{2} k$. (5 pts)
(ii) Is there a unit vector u such that $D_{u} f(3,1,0)=\sqrt{10}$? (3 pts)
(iii) Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ at $(r, s)=(1,0) .(7 p t s)$
(iv) Find the directions of zero change in w at the point $(\mathrm{r}, \mathrm{s})=(1,0)(4 \mathrm{pts})$
(v) Find a line normal to the surface $w(r, s)=4$ in the $r s$-plane. (8 pts)
(vi) Find a plane tangent to the surface $w(r, s)=7(r-s)$ in the $r s-p l a n e$. (7 pts)
(vii) Find the normal line to the surface $w(r, s)=7-\frac{1}{t}$ in the $r s t-s p a c e$. (7 pts)

